Back to Search Start Over

Competing phases in epitaxial vanadium dioxide at nanoscale

Authors :
Yogesh Sharma
Martin V. Holt
Nouamane Laanait
Xiang Gao
Ilia N. Ivanov
Liam Collins
Changhee Sohn
Zhaoliang Liao
Elizabeth Skoropata
Sergei V. Kalinin
Nina Balke
Gyula Eres
Thomas Z. Ward
Ho Nyung Lee
Source :
APL Materials, Vol 7, Iss 8, Pp 081127-081127-6 (2019)
Publication Year :
2019
Publisher :
AIP Publishing LLC, 2019.

Abstract

Phase competition in correlated oxides offers tantalizing opportunities as many intriguing physical phenomena occur near the phase transitions. Owing to a sharp metal-insulator transition (MIT) near room temperature, the correlated vanadium dioxide (VO2) exhibits a strong competition between insulating and metallic phases, which is important for practical applications. However, the phase boundary undergoes a strong modification when strain is involved, yielding complex phase transitions. Here, we report the emergence of nanoscale M2 phase domains in VO2 epitaxial films under anisotropic strain relaxation. The competing phases of the films are imaged by multilength-scale probes, detecting the structural and electrical properties in individual local domains. Competing evolution of the M1 and M2 phases indicates the critical role of lattice-strain on both the stability of the M2 Mott phase and the energetics of the MIT in VO2 films. This study demonstrates how strain engineering can be utilized to design phase states, which allow deliberate control of MIT behavior at the nanoscale in epitaxial VO2 films.

Details

Language :
English
ISSN :
2166532X
Volume :
7
Issue :
8
Database :
Directory of Open Access Journals
Journal :
APL Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.fdb271f291e241fa8993f180f7b9717e
Document Type :
article
Full Text :
https://doi.org/10.1063/1.5115784