Back to Search Start Over

Assessing Inhalation Exposures Associated with Contamination Events in Water Distribution Systems.

Authors :
Michael J Davis
Robert Janke
Thomas N Taxon
Source :
PLoS ONE, Vol 11, Iss 12, p e0168051 (2016)
Publication Year :
2016
Publisher :
Public Library of Science (PLoS), 2016.

Abstract

When a water distribution system (WDS) is contaminated, short-term inhalation exposures to airborne contaminants could occur as the result of domestic water use. The most important domestic sources of such exposures are likely to be showering and the use of aerosol-producing humidifiers, i.e., ultrasonic and impeller (cool-mist) units. A framework is presented for assessing the potential effects of short-term, system-wide inhalation exposures that could result from such activities during a contamination event. This framework utilizes available statistical models for showering frequency and duration, available exposure models for showering and humidifier use, and experimental results on both aerosol generation and the volatilization of chemicals during showering. New models for the times when showering occurs are developed using time-use data for the United States. Given a lack of similar models for how humidifiers are used, or the information needed to develop them, an analysis of the sensitivity of results to assumptions concerning humidifier use is presented. The framework is applied using network models for three actual WDSs. Simple models are developed for estimating upper bounds on the potential effects of system-wide inhalation exposures associated with showering and humidifier use. From a system-wide, population perspective, showering could result in significant inhalation doses of volatile chemical contaminants, and humidifier use could result in significant inhalation doses of microbial contaminants during a contamination event. From a system-wide perspective, showering is unlikely to be associated with significant doses of microbial contaminants. Given the potential importance of humidifiers as a source of airborne contaminants during a contamination event, an improved understanding of the nature of humidifier use is warranted.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
11
Issue :
12
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.fd9b39c856e644baad2a264dab866c06
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0168051