Back to Search Start Over

Egg reappearance periods of anthelmintics against equine cyathostomins: The state of play revisited

Authors :
Stephanie L. Macdonald
Ghazanfar Abbas
Abdul Ghafar
Charles G. Gauci
Jenni Bauquier
Charles El-Hage
Brett Tennent-Brown
Edwina J.A. Wilkes
Anne Beasley
Caroline Jacobson
Lucy Cudmore
Peter Carrigan
John Hurley
Ian Beveridge
Kristopher J. Hughes
Martin K. Nielsen
Abdul Jabbar
Source :
International Journal for Parasitology: Drugs and Drug Resistance, Vol 21, Iss , Pp 28-39 (2023)
Publication Year :
2023
Publisher :
Elsevier, 2023.

Abstract

Cyathostomins are the most common and highly prevalent parasites of horses worldwide. Historically, the control of cyathostomins has mainly relied on the routine use of anthelmintic products. Increasing reports on anthelmintic resistance (AR) in cyathostomins are concerning. A potential method proposed for detecting emerging AR in cyathostomins has been estimating the egg reappearance period (ERP). This paper reviews the data available for the ERP of cyathostomins against the three major classes of anthelmintics, macrocyclic lactones, tetrahydropyrimidines, and benzimidazoles. Published peer-reviewed original research articles were obtained from three databases (PubMed, CAB Direct and Web of Science) and were evaluated for their inclusion in a systematic review. Subsets of articles were then subjected to a review of ERP data. A total of 54 (of 134) studies published between 1972 and 2022 met the criteria for inclusion in the systematic review. Until the beginning of 2022, there was no agreed definition of the ERP; eight definitions of ERP were identified in the literature, complicating the comparison between studies. Additionally, potential risk factors for the shortening of the ERP, including previous anthelmintic use and climate, were frequently not described. Reports of shortened ERP for moxidectin and ivermectin are frequent: 20 studies that used comparable ERP definitions reported shortened moxidectin and ivermectin ERPs of 35 and 28 days, respectively. It is unclear whether the ERPs of these anthelmintics reduced to such levels are due to the development of AR or some biological factors related to horses, cyathostomin species, and/or the environment. The ERPs for other anthelmintics, such as fenbendazole and pyrantel, were frequently not reported due to established resistance against these drugs. Future research in horses is required to understand the mechanism(s) behind the shortening of ERP for cyathostomins. Based on this systematic review, we propose recommendations for future ERP studies.

Details

Language :
English
ISSN :
22113207
Volume :
21
Issue :
28-39
Database :
Directory of Open Access Journals
Journal :
International Journal for Parasitology: Drugs and Drug Resistance
Publication Type :
Academic Journal
Accession number :
edsdoj.fd9a44313d14f73b2ae9ea89a411d95
Document Type :
article
Full Text :
https://doi.org/10.1016/j.ijpddr.2022.12.002