Back to Search Start Over

Million-scale data integrated deep neural network for phonon properties of heuslers spanning the periodic table

Authors :
Alejandro Rodriguez
Changpeng Lin
Hongao Yang
Mohammed Al-Fahdi
Chen Shen
Kamal Choudhary
Yong Zhao
Jianjun Hu
Bingyang Cao
Hongbin Zhang
Ming Hu
Source :
npj Computational Materials, Vol 9, Iss 1, Pp 1-12 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Existing machine learning potentials for predicting phonon properties of crystals are typically limited on a material-to-material basis, primarily due to the exponential scaling of model complexity with the number of atomic species. We address this bottleneck with the developed Elemental Spatial Density Neural Network Force Field, namely Elemental-SDNNFF. The effectiveness and precision of our Elemental-SDNNFF approach are demonstrated on 11,866 full, half, and quaternary Heusler structures spanning 55 elements in the periodic table by prediction of complete phonon properties. Self-improvement schemes including active learning and data augmentation techniques provide an abundant 9.4 million atomic data for training. Deep insight into predicted ultralow lattice thermal conductivity (

Details

Language :
English
ISSN :
20573960
Volume :
9
Issue :
1
Database :
Directory of Open Access Journals
Journal :
npj Computational Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.fd897ee9b94e0f879f44d114a68d6c
Document Type :
article
Full Text :
https://doi.org/10.1038/s41524-023-00974-0