Back to Search Start Over

Chlorhexidine-Containing Electrospun Polymeric Nanofibers for Dental Applications: An In Vitro Study

Authors :
Luana Dutra de Carvalho
Bernardo Urbanetto Peres
Ya Shen
Markus Haapasalo
Hazuki Maezono
Adriana P. Manso
Frank Ko
John Jackson
Ricardo M. Carvalho
Source :
Antibiotics, Vol 12, Iss 9, p 1414 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Chlorhexidine is the most commonly used anti-infective drug in dentistry. To treat infected void areas, a drug-loaded material that swells to fill the void and releases the drug slowly is needed. This study investigated the encapsulation and release of chlorhexidine from cellulose acetate nanofibers for use as an antibacterial treatment for dental bacterial infections by oral bacteria Streptococcus mutans and Enterococcus faecalis. This study used a commercial electrospinning machine to finely control the manufacture of thin, flexible, chlorhexidine-loaded cellulose acetate nanofiber mats with very-small-diameter fibers (measured using SEM). Water absorption was measured gravimetrically, drug release was analyzed by absorbance at 254 nm, and antibiotic effects were measured by halo analysis in agar. Slow electrospinning at lower voltage (14 kV), short target distance (14 cm), slow traverse and rotation, and syringe injection speeds with controlled humidity and temperature allowed for the manufacture of strong, thin films with evenly cross-meshed, uniform low-diameter nanofibers (640 nm) that were flexible and absorbed over 600% in water. Chlorhexidine was encapsulated efficiently and released in a controlled manner. All formulations killed both bacteria and may be used to fill infected voids by swelling for intimate contact with surfaces and hold the drug in the swollen matrix for effective bacterial killing in dental settings.

Details

Language :
English
ISSN :
20796382
Volume :
12
Issue :
9
Database :
Directory of Open Access Journals
Journal :
Antibiotics
Publication Type :
Academic Journal
Accession number :
edsdoj.fd7529a86c8424d845130f5c5d4320d
Document Type :
article
Full Text :
https://doi.org/10.3390/antibiotics12091414