Back to Search Start Over

Optimized OTSU Segmentation Algorithm-Based Temperature Feature Extraction Method for Infrared Images of Electrical Equipment

Authors :
Xueli Liu
Zhanlong Zhang
Yuefeng Hao
Hui Zhao
Yu Yang
Source :
Sensors, Vol 24, Iss 4, p 1126 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Infrared image processing is an effective method for diagnosing faults in electrical equipment, in which target device segmentation and temperature feature extraction are key steps. Target device segmentation separates the device to be diagnosed from the image, while temperature feature extraction analyzes whether the device is overheating and has potential faults. However, the segmentation of infrared images of electrical equipment is slow due to issues such as high computational complexity, and the temperature information extracted lacks accuracy due to the insufficient consideration of the non-linear relationship between the image grayscale and temperature. Therefore, in this study, we propose an optimized maximum between-class variance thresholding method (OTSU) segmentation algorithm based on the Gray Wolf Optimization (GWO) algorithm, which accelerates the segmentation speed by optimizing the threshold determination process using OTSU. The experimental results show that compared to the non-optimized method, the optimized segmentation method increases the threshold calculation time by more than 83.99% while maintaining similar segmentation results. Based on this, to address the issue of insufficient accuracy in temperature feature extraction, we propose a temperature value extraction method for infrared images based on the K-nearest neighbor (KNN) algorithm. The experimental results demonstrate that compared to traditional linear methods, this method achieves a 73.68% improvement in the maximum residual absolute value of the extracted temperature values and a 78.95% improvement in the average residual absolute value.

Details

Language :
English
ISSN :
14248220
Volume :
24
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.fd4e642de7114bbca4fcd6c029d90fc3
Document Type :
article
Full Text :
https://doi.org/10.3390/s24041126