Back to Search Start Over

Escalation with overdose control using time to toxicity for cancer phase I clinical trials.

Authors :
Mourad Tighiouart
Yuan Liu
André Rogatko
Source :
PLoS ONE, Vol 9, Iss 3, p e93070 (2014)
Publication Year :
2014
Publisher :
Public Library of Science (PLoS), 2014.

Abstract

Escalation with overdose control (EWOC) is a Bayesian adaptive phase I clinical trial design that produces consistent sequences of doses while controlling the probability that patients are overdosed. However, this design does not take explicitly into account the time it takes for a patient to exhibit dose limiting toxicity (DLT) since the occurrence of DLT is ascertained within a predetermined window of time. Models to estimate the Maximum Tolerated Dose (MTD) that use the exact time when the DLT occurs are expected to be more precise than those where the variable of interest is categorized as presence or absence of DLT, given that information is lost in the process of categorization of the variable. We develop a class of parametric models for time to toxicity data in order to estimate the MTD efficiently, and present extensive simulations showing that the method has good design operating characteristics relative to the original EWOC and a version of time to event EWOC (TITE-EWOC) which allocates weights to account for the time it takes for a patient to exhibit DLT. The methodology is exemplified by a cancer phase I clinical trial we designed in order to estimate the MTD of Veliparib (ABT-888) in combination with fixed doses of gemcitabine and intensity modulated radiation therapy in patients with locally advanced, un-resectable pancreatic cancer.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
9
Issue :
3
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.fd3efdd9441ad89238fe3bb384530
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0093070