Back to Search Start Over

Automatic deep learning method for third lumbar selection and body composition evaluation on CT scans of cancer patients

Authors :
Lidia Delrieu
Damien Blanc
Amine Bouhamama
Fabien Reyal
Frank Pilleul
Victor Racine
Anne Sophie Hamy
Hugo Crochet
Timothée Marchal
Pierre Etienne Heudel
Source :
Frontiers in Nuclear Medicine, Vol 3 (2024)
Publication Year :
2024
Publisher :
Frontiers Media S.A., 2024.

Abstract

IntroductionThe importance of body composition and sarcopenia is well-recognized in cancer patient outcomes and treatment tolerance, yet routine evaluations are rare due to their time-intensive nature. While CT scans provide accurate measurements, they depend on manual processes. We developed and validated a deep learning algorithm to automatically select and segment abdominal muscles [SM], visceral fat [VAT], and subcutaneous fat [SAT] on CT scans.Materials and MethodsA total of 352 CT scans were collected from two cancer centers. The detection of the third lumbar vertebra and three different body tissues (SM, VAT, and SAT) were annotated manually. The 5-fold cross-validation method was used to develop the algorithm and validate its performance on the training cohort. The results were validated on an external, independent group of CT scans.ResultsThe algorithm for automatic L3 slice selection had a mean absolute error of 4 mm for the internal validation dataset and 5.5 mm for the external validation dataset. The median DICE similarity coefficient for body composition was 0.94 for SM, 0.93 for VAT, and 0.86 for SAT in the internal validation dataset, whereas it was 0.93 for SM, 0.93 for VAT, and 0.85 for SAT in the external validation dataset. There were high correlation scores with sarcopenia metrics in both internal and external validation datasets.ConclusionsOur deep learning algorithm facilitates routine research use and could be integrated into electronic patient records, enhancing care through better monitoring and the incorporation of targeted supportive measures like exercise and nutrition.

Details

Language :
English
ISSN :
26738880
Volume :
3
Database :
Directory of Open Access Journals
Journal :
Frontiers in Nuclear Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.fd2737362634356bdb49d1e08e10758
Document Type :
article
Full Text :
https://doi.org/10.3389/fnume.2023.1292676