Back to Search
Start Over
In situ editing of tumour cell membranes induces aggregation and capture of PD-L1 membrane proteins for enhanced cancer immunotherapy
- Source :
- Nature Communications, Vol 15, Iss 1, Pp 1-20 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract Immune checkpoint blockade (ICB) therapy has emerged as a new therapeutic paradigm for a variety of advanced cancers, but wide clinical application is hindered by low response rate. Here we use a peptide-based, biomimetic, self-assembly strategy to generate a nanoparticle, TPM1, for binding PD-L1 on tumour cell surface. Upon binding with PD-L1, TPM1 transforms into fibrillar networks in situ to facilitate the aggregation of both bound and unbound PD-L1, thereby resulting in the blockade of the PD-1/PD-L1 pathway. Characterizations of TPM1 manifest a prolonged retention in tumour ( > 7 days) and anti-cancer effects associated with reinvigorating CD8+ T cells in multiple mice tumour models. Our results thus hint TPM1 as a potential strategy for enhancing the ICB efficacy.
- Subjects :
- Science
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 15
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.fd108998937049f7923b54c35d321f3d
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41467-024-54081-9