Back to Search Start Over

Enhanced µCT Imaging Protocol to Enable High-Resolution 3D Visualization of Microdamage in Rat Vertebrae

Authors :
Allison Tolgyesi
Normand Robert
Cari M. Whyne
Michael Hardisty
Source :
Applied Sciences, Vol 13, Iss 6, p 3625 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Contrast-enhanced μCT imaging has been used to provide non-destructive 3D images of microdamage, but at a lower quality than found in histology and 2D backscatter electron (BSE) imaging. This study aimed to quantify potential improvements in microdamage characterization by enhancing µCT scanning parameters. Eleven slides from 9 rat vertebrae (healthy = 3, osteolytic metastases = 3, mixed metastases = 3) previously stained for microdamage with BaSO4 and analyzed with BSE imaging (2μm voxel spacing) were used in this study. μCT imaging conducted under varying protocols (x-ray voltage, tube current, frame averaging) demonstrated enhanced scan parameters at 90 kVp, 44 µA, 0.5 mm aluminum filter, 8 times frame averaging, and 4.9 µm voxel spacing. Post-processing with Richardson-Lucy deconvolution further deblurred the μCT images. Labeled microdamage in the baseline, enhanced and deblurred μCT images were segmented and spatially quantified vs. BSE-labeled microdamage using a probability-based correlation metric at six inflation radii. Enhanced μCT scan parameters improved damage visualization and increased spatial correlation probability with BSE images. Deblurring improved the sharpness of stain boundaries but did not significantly improve spatial correlation probabilities in comparison to the enhanced scans. This enhanced μCT protocol facilitates 3D visualization of microdamage, an indicator of bone quality important to bone damage mechanics.

Details

Language :
English
ISSN :
20763417
Volume :
13
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Applied Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.fd040bf5d2f94bce812a4d8a3b42ac21
Document Type :
article
Full Text :
https://doi.org/10.3390/app13063625