Back to Search Start Over

Transcriptome Analysis Reveals Brassinolide Signaling Pathway Control of Foxtail Millet Seedling Starch and Sucrose Metabolism under Freezing Stress, with Implications for Growth and Development

Authors :
Xiatong Zhao
Ke Ma
Zhong Li
Weidong Li
Xin Zhang
Shaoguang Liu
Ru Meng
Boyu Lu
Xiaorui Li
Jianhong Ren
Liguang Zhang
Xiangyang Yuan
Source :
International Journal of Molecular Sciences, Vol 24, Iss 14, p 11590 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Low-temperature stress limits the growth and development of foxtail millet. Freezing stress caused by sudden temperature drops, such as late-spring coldness, often occurs in the seedling stage of foxtail millet. However, the ability and coping strategies of foxtail millet to cope with such stress are not clear. In the present study, we analyzed the self-regulatory mechanisms of freezing stress in foxtail millet. We conducted a physiological study on foxtail millet leaves at −4 °C for seven different durations (0, 2, 4, 6, 8, 10, and 12 h). Longer freezing time increased cell-membrane damage, relative conductance, and malondialdehyde content. This led to osmotic stress in the leaves, which triggered an increase in free proline, soluble sugar, and soluble protein contents. The increases in these substances helped to reduce the damage caused by stress. The activities of superoxide dismutase, peroxidase, and catalase increased reactive oxygen species (ROS) content. The optimal time point for the response to freezing stress was 8 h after exposure. The transcriptome analysis of samples held for 8 h at −4 °C revealed 6862 differentially expressed genes (DEGs), among which the majority are implicated in various pathways, including the starch and sucrose metabolic pathways, antioxidant enzyme pathways, brassinolide (BR) signaling pathway, and transcription factors, according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. We investigated possible crosstalk between BR signals and other pathways and found that BR signaling molecules were induced in response to freezing stress. The beta-amylase (BAM) starch hydrolase signal was enhanced by the BR signal, resulting in the accelerated degradation of starch and the formation of sugars, which served as emerging ROS scavengers and osmoregulators to resist freezing stress. In conclusion, crosstalk between BR signal transduction, and both starch and sucrose metabolism under freezing stress provides a new perspective for improving freezing resistance in foxtail millet.

Details

Language :
English
ISSN :
14220067 and 16616596
Volume :
24
Issue :
14
Database :
Directory of Open Access Journals
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.fceecb9797af4c22b96769f3c5582946
Document Type :
article
Full Text :
https://doi.org/10.3390/ijms241411590