Back to Search
Start Over
Image reconstruction through a multimode fiber with a simple neural network architecture
- Source :
- Scientific Reports, Vol 11, Iss 1, Pp 1-10 (2021)
- Publication Year :
- 2021
- Publisher :
- Nature Portfolio, 2021.
-
Abstract
- Abstract Multimode fibers (MMFs) have the potential to carry complex images for endoscopy and related applications, but decoding the complex speckle patterns produced by mode-mixing and modal dispersion in MMFs is a serious challenge. Several groups have recently shown that convolutional neural networks (CNNs) can be trained to perform high-fidelity MMF image reconstruction. We find that a considerably simpler neural network architecture, the single hidden layer dense neural network, performs at least as well as previously-used CNNs in terms of image reconstruction fidelity, and is superior in terms of training time and computing resources required. The trained networks can accurately reconstruct MMF images collected over a week after the cessation of the training set, with the dense network performing as well as the CNN over the entire period.
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 11
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.fccd6510d884a5aa212e4e930477adf
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-020-79646-8