Back to Search Start Over

Exploring pathological signatures for predicting the recurrence of early-stage hepatocellular carcinoma based on deep learning

Authors :
Wei-Feng Qu
Meng-Xin Tian
Jing-Tao Qiu
Yu-Cheng Guo
Chen-Yang Tao
Wei-Ren Liu
Zheng Tang
Kun Qian
Zhi-Xun Wang
Xiao-Yu Li
Wei-An Hu
Jian Zhou
Jia Fan
Hao Zou
Ying-Yong Hou
Ying-Hong Shi
Source :
Frontiers in Oncology, Vol 12 (2022)
Publication Year :
2022
Publisher :
Frontiers Media S.A., 2022.

Abstract

BackgroundPostoperative recurrence impedes the curability of early-stage hepatocellular carcinoma (E-HCC). We aimed to establish a novel recurrence-related pathological prognosticator with artificial intelligence, and investigate the relationship between pathological features and the local immunological microenvironment.MethodsA total of 576 whole-slide images (WSIs) were collected from 547 patients with E-HCC in the Zhongshan cohort, which was randomly divided into a training cohort and a validation cohort. The external validation cohort comprised 147 Tumor Node Metastasis (TNM) stage I patients from The Cancer Genome Atlas (TCGA) database. Six types of HCC tissues were identified by a weakly supervised convolutional neural network. A recurrence-related histological score (HS) was constructed and validated. The correlation between immune microenvironment and HS was evaluated through extensive immunohistochemical data.ResultsThe overall classification accuracy of HCC tissues was 94.17%. The C-indexes of HS in the training, validation and TCGA cohorts were 0.804, 0.739 and 0.708, respectively. Multivariate analysis showed that the HS (HR= 4.05, 95% CI: 3.40-4.84) was an independent predictor for recurrence-free survival. Patients in HS high-risk group had elevated preoperative alpha-fetoprotein levels, poorer tumor differentiation and a higher proportion of microvascular invasion. The immunohistochemistry data linked the HS to local immune cell infiltration. HS was positively correlated with the expression level of peritumoral CD14+ cells (p= 0.013), and negatively with the intratumoral CD8+ cells (p< 0.001).ConclusionsThe study established a novel histological score that predicted short-term and long-term recurrence for E-HCCs using deep learning, which could facilitate clinical decision making in recurrence prediction and management.

Details

Language :
English
ISSN :
2234943X
Volume :
12
Database :
Directory of Open Access Journals
Journal :
Frontiers in Oncology
Publication Type :
Academic Journal
Accession number :
edsdoj.fc748e3ccadb49d099f8c761f41a3232
Document Type :
article
Full Text :
https://doi.org/10.3389/fonc.2022.968202