Back to Search
Start Over
Fermented Purslane (Portulaca oleracea L.) Supplementation Enhances Growth and Immune Function Parallel to the Regulation of Gut Microbial Butyrate Production in Weaned Piglets
- Source :
- Microorganisms, Vol 12, Iss 7, p 1403 (2024)
- Publication Year :
- 2024
- Publisher :
- MDPI AG, 2024.
-
Abstract
- Weaning is a challenging period for piglets, characterized by stress-related growth checks, compromised immunity, and gut dysbiosis. Purslane (Portulaca oleracea L.), known for its rich content of antioxidants, has potential as a functional feed ingredient. This study investigates the effects of feeding fermented purslane (FP) on the growth performance, immune function, intestinal microbiota, and metabolic profiles of weaned piglets. Forty-eight weaned piglets were randomly divided into two groups, with eight pens in each group and three pigs in each pen: a control diet (CON group) and a diet supplemented with 0.20% FP (FP group). The experiment lasted 28 days. The results show that FP supplementation did not affect the average daily feed intake (ADFI) but significantly increased the average daily gain (ADG) during the initial 14 days post-weaning. FP supplementation decreased diarrhea occurrence, with a pronounced reduction from days 10 to 13 (p < 0.05). Immunologically, the FP group had a trend towards reduced serum IgA levels on day 14 (p < 0.10). Importantly, the serum concentrations of the pro-inflammatory cytokine IL-6 were significantly reduced on both days 14 and 28 post-weaning. The antioxidative analysis showed increased serum superoxide dismutase (SOD) and decreased catalase (CAT) activities on day 14 (p < 0.05). In addition, FP supplementation significantly decreased serum diamine oxidase (DAO) activity and D-lactate levels by day 28, indicating a potential improvement in gut integrity. Fecal microbiota assessment demonstrated a distinctive clustering of microbial communities between the FP and CON groups, with an increase in the abundance of Clostridium_sensu_stricto_1, Tyzzerella, and Prevotellaceae_NK3B31_group and a decrease in Lactobacillus, Bacillus, and Subdoligranulum in the FP group (p < 0.05). Functional predictions suggested that the relative abundance of microbial butyrate synthesis enzymes (EC 2.7.2.7 and EC 2.3.1.19) was significantly enhanced by FP treatment. This modulation was further corroborated by elevated fecal butyrate levels (p < 0.05). In summary, dietary supplementation with FP promotes early-growth performance and has beneficial effects on immune function and intestinal health in weaned piglets. The enhancements may be attributed to distinct microbiota compositional changes and targeted modulation of microbial butyrate metabolism, which are crucial for piglet post-weaning adaptation and overall health.
Details
- Language :
- English
- ISSN :
- 20762607
- Volume :
- 12
- Issue :
- 7
- Database :
- Directory of Open Access Journals
- Journal :
- Microorganisms
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.fc54d1c91294411daa7d99b38302b549
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/microorganisms12071403