Back to Search
Start Over
Multifunctionally-doped PEDOT for organic electrochemical transistors
- Source :
- Frontiers in Materials, Vol 9 (2022)
- Publication Year :
- 2022
- Publisher :
- Frontiers Media S.A., 2022.
-
Abstract
- Organic Electrochemical Transistors (OECTs) are suitable for developing ultra-sensitive bioelectronic sensors. In the organic electrochemical transistors architecture, the source-drain channel is made of a conductive polymer film either cast from a formulated dispersion or electrodeposited from a monomer solution. The commercial poly(3,4-ethylenedioxidethiophene)/poly(styrene sulfonate) (PEDOT:PSS) water dispersion is the workhorse of organic bioelectronics for its high conductance, low impact and ease of processability. In this study, a hybrid organic electrochemical transistors channel fabrication strategy is presented, where electrochemical deposition of a PEDOT/X (with X indicating the counterion) is performed on a dispersion-cast PEDOT:PSS film. Six different counterions where used: X = PSS, Nafion, Hyaluronate, Dextran sulfate, Dexamethasone phosphate and tauroursodeoxycholic acid, each potentially endowing organic electrochemical transistors with additional functions such as ion exchange and pharmacological activity upon release of X. The PEDOT/X-PEDOT:PSS bilayers were characterized by means of electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and focused ion beam tomography combined with scanning electron microscopy (FIB-SEM). In addition, their respective organic electrochemical transistorss were characterized and compared to PEDOT:PSS organic electrochemical transistors. Our results show that the hybrid bilayer strategy is viable to fabricate multifunctional organic electrochemical transistorss with biologically-relevant function, thereby retaining the outstanding figures of merit of commercial PEDOT:PSS.
Details
- Language :
- English
- ISSN :
- 22968016
- Volume :
- 9
- Database :
- Directory of Open Access Journals
- Journal :
- Frontiers in Materials
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.fc26dcccf352490bb2a8015f68c2fa57
- Document Type :
- article
- Full Text :
- https://doi.org/10.3389/fmats.2022.1063763