Back to Search
Start Over
Modeling complex polycrystalline alloys using a Generative Adversarial Network enabled computational platform
- Source :
- Nature Communications, Vol 15, Iss 1, Pp 1-16 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract Creating statistically equivalent virtual microstructures (SEVM) for polycrystalline materials with complex microstructures that encompass multi-modal morphological and crystallographic distributions is a challenging enterprise. Cold spray-formed (CSF) AA7050 alloy containing coarse-grained prior particles and ultra-fine grains (UFG) and additively manufactured (AM) Ti64 alloys with alpha laths in beta substrates. The paper introduces an approach strategically integrating a Generative Adversarial Network (GAN) for multi-modal microstructures with a synthetic microstructure builder DREAM.3D for packing grains conforming to statistics in electron backscatter diffraction (EBSD) maps for generating SEVMs of CSF and AM alloy microstructures. A robust multiscale model is subsequently developed for self-consistent coupling of crystal plasticity finite element model (CPFEM) for coarse-grained crystals with an upscaled constitutive model for UFGs. Sub-volume elements are simulated for efficient computations and their responses are averaged for overall stress-strain response. The methods developed are important for image-based micromechanical modeling that is necessary for microstructure-property relations.
- Subjects :
- Science
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 15
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.fb9d90fd91f64acc97d42183dadd8bfc
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41467-024-53865-3