Back to Search Start Over

Anticancer and Antimicrobial Activity of Red Sea Seaweeds Extracts-Mediated Gold Nanoparticles

Authors :
Rabaa Algotiml
Ali Gab-alla
Roshdi Seoudi
Hussein H. Abulreesh
Iqbal Ahmad
Khaled Elbanna
Source :
Journal of Pure and Applied Microbiology, Vol 16, Iss 1, Pp 207-225 (2022)
Publication Year :
2022
Publisher :
Journal of Pure and Applied Microbiology, 2022.

Abstract

Biosynthesis of gold nanoparticles (AuNPs) is emerging as a better alternative to traditional chemical-based techniques. During this study, extracts of different marine algae species Ulva rigida (green algae), Cystoseira myrica (brown Algae), and Gracilaria foliifera (red Algae) were utilized as reducing and capping agents to synthesize AuNPs. AuNPs capped by U. rigida, C. myrica, and G. foliifera were confirmed by the appearance of surface plasmonic bands at 528, 540, and 543 nm, respectively. Transmission electron microscopy revealed mostly spherical shapes of AuNPs having a size of about 9 nm, 11 nm, and 13 nm for C. myrica, and G. foliifera extracts, respectively. Fourier transform-infrared spectroscopy (FTIR) illustrated the major chemical constituents of U. rigida, C. myrica, and G. foliifera. LC50 values of the biosynthesized AuNPs against Artemia salina nauplii were calculated at a range of concentrations (5-188 μg ml−1) after 16 to 24h. AuNPs concentration-dependent lethality was noted and U. rigida extracts-mediated AuNPs presented the lowest cytotoxicity. The biosynthesized AuNPs exhibited significant anticancer activity (86.83%) against MCF-7 cell lines (human breast adenocarcinoma cell lines) at 188 µg/ml concentration. G. foliifera demonstrated the highest anticancer value (92.13%) followed by C. myrica (89.82%), and U. rigida (86.83%), respectively. The AuNPs synthesized by different algal extracts showed variable antimicrobial activity against the tested pathogenic microorganisms. AuNPs of U. rigida extracts showed significant antimicrobial activity against dermatophytic fungi Trichosporon cataneum (30 mm) followed by Trichophyton mantigrophytes (25 mm). Furthermore, it also exhibited mild activity against Escherichia coli (17 mm), Cryptococcus neoformans (15 mm), Candida albicans (13 mm), and Staphylococcus aureus (11mm), respectively whereas no effects were observed against Bacillus cereus. To conclude, AuNPs can be effectively synthesized by marine algal species, and particularly U. rigida extracts could be effective reducing agents for the green AuNPs synthesis. These AuNPs could potentially serve as efficient alternative anticancer agents against human breast adenocarcinoma and anti-dermatophytes associated with skin infections.

Details

Language :
English
ISSN :
09737510 and 2581690X
Volume :
16
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Pure and Applied Microbiology
Publication Type :
Academic Journal
Accession number :
edsdoj.fb4bddee0641eab2623345b30bd0b4
Document Type :
article
Full Text :
https://doi.org/10.22207/JPAM.16.1.11