Back to Search
Start Over
Behavioral defects in chaperone-deficient Alzheimer's disease model mice.
- Source :
- PLoS ONE, Vol 6, Iss 2, p e16550 (2011)
- Publication Year :
- 2011
- Publisher :
- Public Library of Science (PLoS), 2011.
-
Abstract
- Molecular chaperones protect cells from the deleterious effects of protein misfolding and aggregation. Neurotoxicity of amyloid-beta (Aβ) aggregates and their deposition in senile plaques are hallmarks of Alzheimer's disease (AD). We observed that the overall content of αB-crystallin, a small heat shock protein molecular chaperone, decreased in AD model mice in an age-dependent manner. We hypothesized that αB-crystallin protects cells against Aβ toxicity. To test this, we crossed αB-crystallin/HspB2 deficient (CRYAB⁻/⁻HSPB2⁻/⁻) mice with AD model transgenic mice expressing mutant human amyloid precursor protein. Transgenic and non-transgenic mice in chaperone-sufficient or deficient backgrounds were examined for representative behavioral paradigms for locomotion and memory network functions: (i) spatial orientation and locomotion was monitored by open field test; (ii) sequential organization and associative learning was monitored by fear conditioning; and (iii) evoked behavioral response was tested by hot plate method. Interestingly, αB-crystallin/HspB2 deficient transgenic mice were severely impaired in locomotion compared to each genetic model separately. Our results highlight a synergistic effect of combining chaperone deficiency in a transgenic mouse model for AD underscoring an important role for chaperones in protein misfolding diseases.
Details
- Language :
- English
- ISSN :
- 19326203
- Volume :
- 6
- Issue :
- 2
- Database :
- Directory of Open Access Journals
- Journal :
- PLoS ONE
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.fb1844c865c46d5a67fbc5f7e241779
- Document Type :
- article
- Full Text :
- https://doi.org/10.1371/journal.pone.0016550