Back to Search Start Over

Ion Channel Modeling beyond State of the Art: A Comparison with a System Theory-Based Model of the Shaker-Related Voltage-Gated Potassium Channel Kv1.1

Authors :
Sonja Langthaler
Jasmina Lozanović Šajić
Theresa Rienmüller
Seth H. Weinberg
Christian Baumgartner
Source :
Cells, Vol 11, Iss 2, p 239 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

The mathematical modeling of ion channel kinetics is an important tool for studying the electrophysiological mechanisms of the nerves, heart, or cancer, from a single cell to an organ. Common approaches use either a Hodgkin–Huxley (HH) or a hidden Markov model (HMM) description, depending on the level of detail of the functionality and structural changes of the underlying channel gating, and taking into account the computational effort for model simulations. Here, we introduce for the first time a novel system theory-based approach for ion channel modeling based on the concept of transfer function characterization, without a priori knowledge of the biological system, using patch clamp measurements. Using the shaker-related voltage-gated potassium channel Kv1.1 (KCNA1) as an example, we compare the established approaches, HH and HMM, with the system theory-based concept in terms of model accuracy, computational effort, the degree of electrophysiological interpretability, and methodological limitations. This highly data-driven modeling concept offers a new opportunity for the phenomenological kinetic modeling of ion channels, exhibiting exceptional accuracy and computational efficiency compared to the conventional methods. The method has a high potential to further improve the quality and computational performance of complex cell and organ model simulations, and could provide a valuable new tool in the field of next-generation in silico electrophysiology.

Details

Language :
English
ISSN :
20734409
Volume :
11
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Cells
Publication Type :
Academic Journal
Accession number :
edsdoj.fb0d4fbda991430e887015bbd2f04c95
Document Type :
article
Full Text :
https://doi.org/10.3390/cells11020239