Back to Search
Start Over
Decomposable graphs and definitions with no quantifier alternation
- Source :
- Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings vol. AE,..., Iss Proceedings (2005)
- Publication Year :
- 2005
- Publisher :
- Discrete Mathematics & Theoretical Computer Science, 2005.
-
Abstract
- Let $D(G)$ be the minimum quantifier depth of a first order sentence $\Phi$ that defines a graph $G$ up to isomorphism in terms of the adjacency and the equality relations. Let $D_0(G)$ be a variant of $D(G)$ where we do not allow quantifier alternations in $\Phi$. Using large graphs decomposable in complement-connected components by a short sequence of serial and parallel decompositions, we show examples of $G$ on $n$ vertices with $D_0(G) \leq 2 \log^{\ast}n+O(1)$. On the other hand, we prove a lower bound $D_0(G) \geq \log^{\ast}n-\log^{\ast}\log^{\ast}n-O(1)$ for all $G$. Here $\log^{\ast}n$ is equal to the minimum number of iterations of the binary logarithm needed to bring $n$ below $1$.
Details
- Language :
- English
- ISSN :
- 13658050
- Volume :
- DMTCS Proceedings vol. AE,...
- Issue :
- Proceedings
- Database :
- Directory of Open Access Journals
- Journal :
- Discrete Mathematics & Theoretical Computer Science
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.fb0c56348c134d5f968912580ececb1f
- Document Type :
- article
- Full Text :
- https://doi.org/10.46298/dmtcs.3423