Back to Search Start Over

Decomposable graphs and definitions with no quantifier alternation

Authors :
Oleg Pikhurko
Joel Spencer
Oleg Verbitsky
Source :
Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings vol. AE,..., Iss Proceedings (2005)
Publication Year :
2005
Publisher :
Discrete Mathematics & Theoretical Computer Science, 2005.

Abstract

Let $D(G)$ be the minimum quantifier depth of a first order sentence $\Phi$ that defines a graph $G$ up to isomorphism in terms of the adjacency and the equality relations. Let $D_0(G)$ be a variant of $D(G)$ where we do not allow quantifier alternations in $\Phi$. Using large graphs decomposable in complement-connected components by a short sequence of serial and parallel decompositions, we show examples of $G$ on $n$ vertices with $D_0(G) \leq 2 \log^{\ast}n+O(1)$. On the other hand, we prove a lower bound $D_0(G) \geq \log^{\ast}n-\log^{\ast}\log^{\ast}n-O(1)$ for all $G$. Here $\log^{\ast}n$ is equal to the minimum number of iterations of the binary logarithm needed to bring $n$ below $1$.

Details

Language :
English
ISSN :
13658050
Volume :
DMTCS Proceedings vol. AE,...
Issue :
Proceedings
Database :
Directory of Open Access Journals
Journal :
Discrete Mathematics & Theoretical Computer Science
Publication Type :
Academic Journal
Accession number :
edsdoj.fb0c56348c134d5f968912580ececb1f
Document Type :
article
Full Text :
https://doi.org/10.46298/dmtcs.3423