Back to Search
Start Over
Strong gravitational lensing, quasi-periodic oscillations and constraints from EHT observations for quantum-improved charged black hole
- Source :
- European Physical Journal C: Particles and Fields, Vol 84, Iss 4, Pp 1-16 (2024)
- Publication Year :
- 2024
- Publisher :
- SpringerOpen, 2024.
-
Abstract
- Abstract We investigate strong gravitational lensing by quantum-improved charged black holes characterized by an additional parameter denoted as $$\omega $$ ω , in addition to the mass M and charge Q. Our findings reveal that when both the parameters Q/2M and $$\omega /4M^2$$ ω / 4 M 2 increase simultaneously, various astrophysical consequences, such as the deflection angle $$\alpha _D(u)$$ α D ( u ) and angular image separation increase. Concurrently, the angular position $$\theta _{\infty }$$ θ ∞ , relative magnification $$r_{mag}$$ r mag , and the time delay $$\Delta T_{2,1}$$ Δ T 2 , 1 between the first and second relativistic images also decrease with the growing values of the parameters Q/2M and $$\omega /4M^2$$ ω / 4 M 2 . It is also observed that the Einstein ring $$\theta _1^E$$ θ 1 E for the quantum-improved charged black hole is more significant than those for Schwarzschild, quantum-improved Schwarzschild, and Reisner–Nordström black holes. As with supermassive black holes such as $$M87^*$$ M 87 ∗ and $$SgrA^*$$ S g r A ∗ , it is observed that to be a viable astrophysical black hole, the EHT results constrain the parameter space ( $$\omega /4M^2$$ ω / 4 M 2 , Q/2M). Remarkably, the EHT results for $$SgrA^*$$ S g r A ∗ impose more stringent limits on the parameter space of quantum-improved charged black holes compared to those established by the EHT results for $$M87^*$$ M 87 ∗ . We investigate the radial profiles of orbital and radial harmonic oscillation frequencies as a function of the dimensionless coupling constants and black hole mass. The main characteristics of test particle quasi-periodic oscillations close to stable circular orbits in the black hole equatorial plane are also examined. We study the positioning of resonant radii in the background of quantum-improved charged black holes for high-frequency quasi-periodic oscillations models: warped disc (WD) models, relativistic precession (RP) and its types, and epicyclic resonance (ER) and its variants.
Details
- Language :
- English
- ISSN :
- 14346052
- Volume :
- 84
- Issue :
- 4
- Database :
- Directory of Open Access Journals
- Journal :
- European Physical Journal C: Particles and Fields
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.faf51cc2165140d4a4d0a24dba8415f9
- Document Type :
- article
- Full Text :
- https://doi.org/10.1140/epjc/s10052-024-12679-9