Back to Search
Start Over
A Curved Microstrip Patch Antenna Designed From Transparent Conductive Films
- Source :
- IEEE Access, Vol 11, Pp 839-848 (2023)
- Publication Year :
- 2023
- Publisher :
- IEEE, 2023.
-
Abstract
- Transparent microstrip patch antennas suffer from low radiation efficiency and gain when manufactured using transparent conductive films (TCFs), mainly at low frequency (starting from the microwave S band). To address this problem, we propose a curved microstrip patch antenna designed using transparent materials. This new configuration has proven to be a simple and effective solution to improve the radiation efficiency and gain of TCF printed antennas. In fact, when typical values of the TCF surface resistance are considered (between 2 and 10 $\Omega $ /sq), the new antenna features a radiation efficiency of up to 72.3% and a realized gain of up to 5.3 dBi at 2.15 GHz, with a significant improvement in comparison with the flat transparent microstrip antenna (up to 17.7% radiation efficiency, and 0.5 dBi realized gain). Good transparency and lightweight is ensured by the deposition of the TCF on a polyethylene terephthalate film, which lies, in turn, on a 3D-printed curved polyethylene terephthalate glycol supporting frame. Simulations using Ansys HFSS are presented to demonstrate the potential of the proposed configuration. Then, a prototype of the transparent curved patch antenna is fabricated and measured to assess the simulated results.
Details
- Language :
- English
- ISSN :
- 21693536
- Volume :
- 11
- Database :
- Directory of Open Access Journals
- Journal :
- IEEE Access
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.fad1c47eba6940cfaab03e22aa3eca19
- Document Type :
- article
- Full Text :
- https://doi.org/10.1109/ACCESS.2022.3233471