Back to Search
Start Over
Synthesis of Fe3O4/Ag nanohybrid ferrofluids and their applications as antimicrobial and antifibrotic agents
- Source :
- Heliyon, Vol 6, Iss 12, Pp e05813- (2020)
- Publication Year :
- 2020
- Publisher :
- Elsevier, 2020.
-
Abstract
- To date, the search for creating stable ferrofluids with excellent properties for biomedical application is one of the challenging scientific and practical investigations. In this study, novel Fe3O4/Ag nanohybrid ferrofluids from iron sand were synthesized using a double-layer method. The Fe3O4/Ag nanocomposites exhibited stable crystallite sizes of 11.8 12.1 nm and 36.8–37.2 nm for Fe3O4 and Ag, respectively. The lattice parameters of the spinel structure Fe3O4 and face-centered cubic Ag were respectively 8.344 Å and 4.091 Å. With increasing Ag amount, the crystallite phase of Ag in the nanocomposites increased from 40.2% to 77.2%. The XPS results confirmed that Fe3O4/Ag nanocomposites were successfully prepared, where Fe3O4 mixed well with Ag via strong ionic bonding. The FTIR results confirmed the presence of Fe3O4/Ag, oleic acid, and dimethyl sulfoxide as the filler, first layer, and second layer, respectively. The as-prepared ferrofluids exhibited superparamagnetic behavior, where the saturation magnetization decreased with increasing Ag content. The Fe3O4/Ag nanohybrid ferrofluids exhibited excellent antimicrobial performance against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Candida albicans. More importantly, the Fe3O4/Ag nanohybrid ferrofluids decreased the progression of liver fibrosis-related inflammation and fibrogenic activity on hepatic stellate cells.
Details
- Language :
- English
- ISSN :
- 24058440
- Volume :
- 6
- Issue :
- 12
- Database :
- Directory of Open Access Journals
- Journal :
- Heliyon
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.faa1afc354fb4cda97acabec574b16f9
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.heliyon.2020.e05813