Back to Search Start Over

Interlayer Performance, Viscoelastic Performance, and Road Performance Based on High-Performance Asphalt Composite Structures

Authors :
Yan Liang
Shuaishuai Ma
Yaqin Zhang
Source :
Buildings, Vol 14, Iss 7, p 1885 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Weaknesses generated in asphalt pavement structures have a serious impact on the service life of pavements. In order to improve such situations and achieve the goal of enhancing the durability of the pavement structure, this study assesses the performance of heavy-duty asphalt and high-viscosity asphalt, using four high-performance asphalt mixtures: heavy-duty AC-20, high-viscosity AC-20, heavy-duty SMA-13, and heavy-duty SMA-10. Three composite pavement structures were designed: 3 cm SMA-10 + 3 cm SMA-10, 4 cm SMA-13 + 4 cm SMA-10, and 6 cm SMA-13 + 4 cm AC-20. Interlayer performance analysis was conducted on single-layer and composite structures through oblique shear tests; dynamic modulus, fatigue life, and antirutting performance tests on asphalt pavement structural layers were designed and conducted, and the durability performance of high-performance asphalt pavement structural layers was evaluated. The experimental results show that the shear strength of heavy-duty AC is higher than that of heavy-duty SMA, the 4 + 4 combination structure has the best shear strength, the 6 + 4 combination structure has the best structural performance and fatigue resistance, and the 3 + 3 combination structure has the best high-temperature antirutting performance. The comprehensive performance of the 4 + 4 structure is the best among the three combined structures, followed by that of the 6 + 4 structure, and the performance of the 3 + 3 structure is the worst. In addition, this study used bonding energy as an evaluation index and verified the applicability of the bonding energy evaluation index by studying four types of single-layer pavement structures and three types of composite pavement structures.

Details

Language :
English
ISSN :
20755309
Volume :
14
Issue :
7
Database :
Directory of Open Access Journals
Journal :
Buildings
Publication Type :
Academic Journal
Accession number :
edsdoj.fa8c894334b94cb4978ff42cb2c658a8
Document Type :
article
Full Text :
https://doi.org/10.3390/buildings14071885