Back to Search
Start Over
Relaxation processes in silicon heterojunction solar cells probed via noise spectroscopy
- Source :
- Scientific Reports, Vol 11, Iss 1, Pp 1-10 (2021)
- Publication Year :
- 2021
- Publisher :
- Nature Portfolio, 2021.
-
Abstract
- Abstract We have employed state-of-the-art cross-correlation noise spectroscopy (CCNS) to study carrier dynamics in silicon heterojunction solar cells (SHJ SCs). These cells were composed of a light absorbing n-doped monocrystalline silicon wafer contacted by passivating layers of i-a-Si:H and doped a-Si:H selective contact layers. Using CCNS, we are able to resolve and characterize four separate noise contributions: (1) shot noise with Fano factor close to unity due to holes tunneling through the np-junction, (2) a 1/f term connected to local potential fluctuations of charges trapped in a-Si:H defects, (3) generation-recombination noise with a time constant between 30 and 50 μs and attributed to recombination of holes at the interface between the ITO and n-a-Si:H window layer, and (4) a low-frequency generation-recombination term observed below 100 K which we assign to thermal emission over the ITO/ni-a-Si:H interface barrier. These results not only indicate that CCNS is capable of reveling otherwise undetectable relaxation process in SHJ SCs and other multi-layer devices, but also that the technique has a spatial selectivity allowing for the identification of the layer or interface where these processes are taking place.
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 11
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.fa3a1c691619482286bfa8b0188083a0
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-021-92866-w