Back to Search
Start Over
Evolution of Coastal Environments under Inundation Scenarios Using an Oceanographic Model and Remote Sensing Data
- Source :
- Remote Sensing, Vol 16, Iss 14, p 2599 (2024)
- Publication Year :
- 2024
- Publisher :
- MDPI AG, 2024.
-
Abstract
- A new methodology to map Italian coastal areas at risk of flooding is presented. This approach relies on detailed projections of the future sea level from a high-resolution, three-dimensional model of the Mediterranean Sea circulation, on the best available digital terrain model of the Italian coasts, and on the most advanced satellite-derived data of ground motion, provided by the European Ground Motion Service of Copernicus. To obtain a reliable understanding of coastal evolution, future sea level projections and estimates of the future vertical ground motion based on the currently available data were combined and spread over the digital terrain model, using a GIS-based approach specifically developed for this work. The coastal plains of Piombino-Follonica and Marina di Campo (Tuscany Region), Alghero-Fertilia (Sardinia), and Rome and Latina-Sabaudia (Lazio Region) were selected as test cases for the new approach. These coastal stretches are important for the ecosystems and the economic activities they host and are relatively stable areas from a geological point of view. Flood maps were constructed for these areas, for the reference periods 2010–2040, 2040–2070, and 2040–2099. Where possible, the new maps were compared with previous results, highlighting differences that are mainly due to the more refined and resolved sea-level projection and to the detailed Copernicus ground motion data. Coastal flooding was simulated by using the “bathtub” approach without considering the morphodynamic processes induced by waves and currents during the inundation process. The inundation zone was represented by the water level raised on a coastal DTM, selecting all vulnerable areas that were below the predicted new water level. Consequent risk was related to the exposed asset.
Details
- Language :
- English
- ISSN :
- 20724292
- Volume :
- 16
- Issue :
- 14
- Database :
- Directory of Open Access Journals
- Journal :
- Remote Sensing
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.f9c790bff7b647ef8a104c7b63a07842
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/rs16142599