Back to Search Start Over

Anthropomorphism-based causal and responsibility attributions to robots

Authors :
Yuji Kawai
Tomohito Miyake
Jihoon Park
Jiro Shimaya
Hideyuki Takahashi
Minoru Asada
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-13 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract People tend to expect mental capabilities in a robot based on anthropomorphism and often attribute the cause and responsibility for a failure in human-robot interactions to the robot. This study investigated the relationship between mind perception, a psychological scale of anthropomorphism, and attribution of the cause and responsibility in human-robot interactions. Participants played a repeated noncooperative game with a human, robot, or computer agent, where their monetary rewards depended on the outcome. They completed questionnaires on mind perception regarding the agent and whether the participant’s own or the agent’s decisions resulted in the unexpectedly small reward. We extracted two factors of Experience (capacity to sense and feel) and Agency (capacity to plan and act) from the mind perception scores. Then, correlation and structural equation modeling (SEM) approaches were used to analyze the data. The findings showed that mind perception influenced attribution processes differently for each agent type. In the human condition, decreased Agency score during the game led to greater causal attribution to the human agent, consequently also increasing the degree of responsibility attribution to the human agent. In the robot condition, the post-game Agency score decreased the degree of causal attribution to the robot, and the post-game Experience score increased the degree of responsibility to the robot. These relationships were not observed in the computer condition. The study highlights the importance of considering mind perception in designing appropriate causal and responsibility attribution in human-robot interactions and developing socially acceptable robots.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.f989c5e826234d5ba677fb97d01ba978
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-023-39435-5