Back to Search Start Over

Conceptual model of IMSIC-250 cyclotron magnet

Authors :
Kamran Farhoodi
Saeed Setayeshi
Amir Hossein Feghhi
Source :
Iranian Journal of Physics Research, Vol 22, Iss 3, Pp 115-121 (2022)
Publication Year :
2022
Publisher :
Isfahan University of Technology, 2022.

Abstract

Proton therapy with accelerator systems has been used in the last 30 years to destroy tumors by producing highly energetic ion beams. Although different systems have been introduced and designed to accelerate ions, the superconductive cyclotron accelerator is one of the most efficient treatment equipment compared to other systems. In this research, the design study of Iranian Medical Proton Superconducting Cyclotron (IMSIC-250) was considered. The IMSIC-250 system is a fixed frequency cyclotron with four spiral sector magnets designed to accelerate protons in the form of H2+ particles up to 250 MeV/amu. In the current study, the design process of the superconducting magnet and coil structure was reported. The 3D model of the spiral pole magnet alongside the superconducting coil was modeled. The main characteristics of the cyclotron magnet and coil structure were also studied. It was demonstrated that the designed magnet is capable of producing the desired isochronous magnetic field in order to accelerate protons up to 250 MeV. The stability of the acceleration process was achieved by a nonnegative value of flutter over the acceleration of particles. For coil structure, the current density over coil turns and the applied force was modeled. The flutter concept was also used to investigate the stability of the acceleration process. It was discovered that flutter has a nonnegative value when compared to particle acceleration. Finally, the stability of a magnetic coil against applied magnetics (Lorentz) force was investigated and it was demonstrated that the applied magnetic field on the coil would not have a destructive influence on the superconducting structure of the coil.

Details

Language :
English, Persian
ISSN :
16826957 and 23453664
Volume :
22
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Iranian Journal of Physics Research
Publication Type :
Academic Journal
Accession number :
edsdoj.f91ebc4a75545dfa1ee72c4cab07bfc
Document Type :
article
Full Text :
https://doi.org/10.47176/ijpr.22.3.11347