Back to Search
Start Over
Saliency-Aware Deep Learning Approach for Enhanced Endoscopic Image Super-Resolution
- Source :
- IEEE Access, Vol 12, Pp 83452-83465 (2024)
- Publication Year :
- 2024
- Publisher :
- IEEE, 2024.
-
Abstract
- The adoption of Stereo Imaging technology within endoscopic procedures represents a transformative advancement in medical imaging, providing surgeons with depth perception and detailed views of internal anatomy for enhanced diagnostic accuracy and surgical precision. However, the practical application of stereo imaging in endoscopy faces challenges, including the generation of low-resolution and blurred images, which can hinder the effectiveness of medical diagnoses and interventions. Our research introduces an endoscopic image SR model in response to these specific. This model features an innovative feature extraction module and an advanced cross-view feature interaction module tailored for the intricacies of endoscopic imagery. Initially trained on the SCARED dataset, our model was rigorously tested across four additional publicly available endoscopic image datasets at scales 2, 4, and 8, demonstrating unparalleled performance improvements in endoscopic SR. Our results are compelling. They show that our model not only substantially enhances the quality of endoscopic images but also consistently surpasses other existing methods like E-SEVSR, DCSSRNet, and CCSBESR in all tested datasets, in quantitative measures such as PSNR and SSIM, and in qualitative evaluations. The successful application of our SR model in endoscopic imaging has the potential to revolutionize medical diagnostics and surgery, significantly increasing the precision and effectiveness of endoscopic procedures. The code will be released on GitHub and can be accessed at https://github.com/cu-vtrg-lab/Saliency-Aware-Deep-Learning-Approach-for-Enhanced-Endoscopic-Image-SR.
Details
- Language :
- English
- ISSN :
- 21693536
- Volume :
- 12
- Database :
- Directory of Open Access Journals
- Journal :
- IEEE Access
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.f91b4f5388514582a104eed6f10ba94d
- Document Type :
- article
- Full Text :
- https://doi.org/10.1109/ACCESS.2024.3402953