Back to Search Start Over

Prediction of 3D Cardiovascular hemodynamics before and after coronary artery bypass surgery via deep learning

Authors :
Gaoyang Li
Haoran Wang
Mingzi Zhang
Simon Tupin
Aike Qiao
Youjun Liu
Makoto Ohta
Hitomi Anzai
Source :
Communications Biology, Vol 4, Iss 1, Pp 1-12 (2021)
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Anzai et al. propose a deep learning approach to estimate the 3D hemodynamics of complex aorta-coronary artery geometry in the context of coronary artery bypass surgery. Their method reduces the calculation time 600-fold, while allowing high resolution and similar accuracy as traditional computational fluid dynamics (CFD) method.

Subjects

Subjects :
Biology (General)
QH301-705.5

Details

Language :
English
ISSN :
23993642
Volume :
4
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Communications Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.f908395dcdb74fa3815c2468a4e3b0a5
Document Type :
article
Full Text :
https://doi.org/10.1038/s42003-020-01638-1