Back to Search Start Over

Characterization of Male Flower Induction by Silver Thiosulfate Foliar Spray in Female Cannabis at the Middle Reproductive Stage for Breeding

Authors :
Juyoung Kim
Dong-Gun Kim
Woon Ji Kim
Ye-Jin Lee
Seung Hyeon Lee
Jaihyunk Ryu
Jae Hoon Kim
Sang Hoon Kim
Source :
Plants, Vol 13, Iss 17, p 2429 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Cannabis (Cannabis sativa) is a versatile crop belonging to the Cannabaceae family, and is dioecious, typically with separate male and female plants. The flowers of female plants, especially the trichomes, accumulate relatively higher contents of cannabinoids compared with those of male plants. For this reason, to obtain seeds that are genetically female, it is desirable to induce the development of male flowers on a female plant that produces genetically female haploid gametes. Silver thiosulfate (STS) is a highly effective chemical for male flower induction. We investigated male flower induction in three commercial cultivars of female cannabis (Spectrum303, SuperwomanS1, and CBGambit) regarding the treatment frequency, stage of application, and concentration of STS applied as a foliar spray. All three cultivars showed adequate induction of male flowers in response to 1.5 mM STS applied at the early reproductive stage. In particular, SuperwomanS1 was most highly responsive to induction of male flowers, even when treated with 0.3 mM STS at the early reproductive stage. Treatment with three applications of STS was more effective compared with a single application, but a single application of 1.5 mM STS at the early reproductive stage was sufficient for male flower induction. A single STS application during the middle stage of reproductive growth was inadequate for induction of male flowers. However, 6 weeks after three applications of STS, CBGambit exhibited approximately 54% male flower induction at 0.3 mM STS, Spectrum303 showed approximately 56% induction at 3 mM STS, and SuperwomanS1 yielded approximately 26% induction at 1.5 mM (expressed as percentage of total number of individuals with the induced male flowers). Pollen stainability tests using KI-I2 solution and Alexander’s staining showed high pollen viability with over 65% at different single STS concentrations, indicating that pollen grains induced by STS have sufficient viability for the self-pollination. This study demonstrated that different cultivars of cannabis respond diversely to different STS concentrations and highlighted the potential benefits of three STS applications during the middle reproductive stage for cannabis breeding.

Details

Language :
English
ISSN :
22237747
Volume :
13
Issue :
17
Database :
Directory of Open Access Journals
Journal :
Plants
Publication Type :
Academic Journal
Accession number :
edsdoj.f8fc2032f3714c95b1b0ac1e5a5cc8c7
Document Type :
article
Full Text :
https://doi.org/10.3390/plants13172429