Back to Search Start Over

Heat stress during reproductive stages reduces camelina seed productivity and changes seed composition

Authors :
Brian E. Smith
Chaofu Lu
Source :
Heliyon, Vol 10, Iss 4, Pp e26678- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

Camelina (Camelina sativa L. Crantz) is a low-input oilseed crop with great potential in bioenergy and industrial oils. Improving tolerance to high temperatures is essential for camelina agronomic sustainability. Two genotypes, Suneson and Pryzeth, were exposed to a transient 14-day heat stress at 37 °C during the reproductive stages. Four cohorts of pods along the main stem, which were at different stages from fully developed pods (C1), young pods (C2), open flowers (C3) and flowering buds (C4) at the time of heat treatment, were examined for morphological and seed quality traits at maturity. The main stem length was shortened in both genotypes. Pods and seeds in all cohorts were negatively affected by heat, resulting in lower seed yield and reduced oil content. Seed size and seed weight had the greatest reduction in C1, pod size reduction was found the most in C3, and the number of fertile pods that contain at least one seed was reduced in C3 and C4. These results suggest that heat stress effects are developmental stage specific. Heat stress significantly reduced fertility during flowering and inhibited storage product biosynthesis and accumulation during seed filling which resulted in smaller and lighter seeds. Analyzing seed composition indicated that oil content decreased while protein content increased in seeds from heat treated plants. In addition, fatty acid composition was altered with the reduction of omega-3 α-linolenic acid and concomitantly increased omega-6 linoleic acid being the most significantly affected. Our results also revealed the different responses in the two genotypes examined, suggesting genetic variation in camelina germplasm which can be explored to improve heat tolerance. This study provides resources and guidance for future studies to understand genetic and physiological mechanisms of heat stress and to assist in improving the sustainability of camelina production facing climate change.

Details

Language :
English
ISSN :
24058440
Volume :
10
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Heliyon
Publication Type :
Academic Journal
Accession number :
edsdoj.f8ecd1369a5d4cc4a6faa9094a7224e4
Document Type :
article
Full Text :
https://doi.org/10.1016/j.heliyon.2024.e26678