Back to Search Start Over

Benchmarks for Evaluating Optimization Algorithms and Benchmarking MATLAB Derivative-Free Optimizers for Practitioners’ Rapid Access

Authors :
Lin Li
Alfredo Alan Flores Saldivar
Yun Bai
Yi Chen
Qunfeng Liu
Yun Li
Source :
IEEE Access, Vol 7, Pp 79657-79670 (2019)
Publication Year :
2019
Publisher :
IEEE, 2019.

Abstract

MATLAB® has built in five derivative-free optimizers (DFOs), including two direct search algorithms (simplex search, pattern search) and three heuristic algorithms (simulated annealing, particle swarm optimization, and genetic algorithm), plus a few in the official user repository, such as Powell's conjugate (PC) direct search recommended by MathWorks®. To help a practicing engineer or scientist to choose a MATLAB DFO most suitable for their application at hand, this paper presents a set of five benchmarking criteria for optimization algorithms and then uses four widely adopted benchmark problems to evaluate the DFOs systematically. Comprehensive tests recommend that the PC be most suitable for a unimodal or relatively simple problem, whilst the genetic algorithm (with elitism in MATLAB, GAe) for a relatively complex, multimodal or unknown problem. This paper also provides an amalgamated scoring system and a decision tree for specific objectives, in addition to recommending the GAe for optimizing structures and categories as well as for offline global search together with PC for local parameter tuning or online adaptation. To verify these recommendations, all the six DFOs are further tested in a case study optimizing a popular nonlinear filter. The results corroborate the benchmarking results. It is expected that the benchmarking system would help select optimizers for practical applications.

Details

Language :
English
ISSN :
21693536
Volume :
7
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.f898a6e2c35c42439b8132b61cc07eb2
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2019.2923092