Back to Search Start Over

Quenching of the Photoluminescence of Gold Nanoclusters Synthesized by Pulsed Laser Ablation in Water upon Interaction with Toxic Metal Species in Aqueous Solution

Authors :
Tahir
Fernando Lazaro Freire Jr
Ricardo Q. Aucelio
Marco Cremona
Juliana da S. Padilha
Giancarlo Margheri
Quaid Zaman
Guilherme C. Concas
Mariana Gisbert
Sajjad Ali
Carlos A. T. Toloza
Yordy E. Licea
Tatiana D. Saint’Pierre
Rafael S. Carvalho
Rajwali Khan
Gino Mariotto
Nicola Daldosso
Geronimo Perez
Tommaso Del Rosso
Source :
Chemosensors, Vol 11, Iss 2, p 118 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Sensors for the detection of heavy metal ions in water are in high demand due to the danger they pose to both the environment and human health. Among their possible detection approaches, modulation of the photoluminescence of gold nanoclusters (AuNCs) is gaining wide interest as an alternative to classical analytical methods based on complex and high-cost instrumentation. In the present work, luminescent oxidized AuNCs emitting in both ultraviolet (UV) and visible (blue) regions were synthesized by pulsed laser ablation of a gold target in NaOH aqueous solution, followed by different bleaching processes. High-resolution electron microscopy and energy-dispersive X-ray scattering confirmed the presence of oxygen and gold in the transparent photoluminescent clusters, with an average diameter of about 3 nm. The potentialities of the bleached AuNCs colloidal dispersions for the detection of heavy metal ions were studied by evaluating the variation in photoluminescence in the presence of Cd2+, Pb2+, Hg2+ and CH3Hg+ ions. Different responses were observed in the UV and visible (blue) spectral regions. The intensity of blue emission decreased (no more than 10%) and saturated at concentrations higher than 20 ppb for all the heavy metal ions tested. In contrast, the UV band emission was remarkably affected in the presence of Hg2+ ions, thus leading to signal variations for concentrations well beyond 20 ppb (the concentration at which saturation occurs for other ions). The limit of detection for Hg2+ is about 3 ppb (15 nmol/L), and the photoluminescence intensity diminishes linearly by about 75% up to 600 ppb. The results are interpreted based on the ligand-free interaction, i.e., the metallophilic bonding formation of Hg2+ and Au+ oxide present on the surface of the UV-emitting nanoclusters.

Details

Language :
English
ISSN :
22279040
Volume :
11
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Chemosensors
Publication Type :
Academic Journal
Accession number :
edsdoj.f8497f80015649919b2be9460013f3d5
Document Type :
article
Full Text :
https://doi.org/10.3390/chemosensors11020118