Back to Search Start Over

Clustering Insomnia Patterns by Data From Wearable Devices: Algorithm Development and Validation Study

Authors :
Park, Sungkyu
Lee, Sang Won
Han, Sungwon
Cha, Meeyoung
Source :
JMIR mHealth and uHealth, Vol 7, Iss 12, p e14473 (2019)
Publication Year :
2019
Publisher :
JMIR Publications, 2019.

Abstract

BackgroundAs societies become more complex, larger populations suffer from insomnia. In 2014, the US Centers for Disease Control and Prevention declared that sleep disorders should be dealt with as a public health epidemic. However, it is hard to provide adequate treatment for each insomnia sufferer, since various behavioral characteristics influence symptoms of insomnia collectively. ObjectiveWe aim to develop a neural-net based unsupervised user clustering method towards insomnia sufferers in order to clarify the unique traits for each derived groups. Unlike the current diagnosis of insomnia that requires qualitative analysis from interview results, the classification of individuals with insomnia by using various information modalities from smart bands and neural-nets can provide better insight into insomnia treatments. MethodsThis study, as part of the precision psychiatry initiative, is based on a smart band experiment conducted over 6 weeks on individuals with insomnia. During the experiment period, a total of 42 participants (19 male; average age 22.00 [SD 2.79]) from a large university wore smart bands 24/7, and 3 modalities were collected and examined: sleep patterns, daily activities, and personal demographics. We considered the consecutive daily information as a form of images, learned the latent variables of the images via a convolutional autoencoder (CAE), and clustered and labeled the input images based on the derived features. We then converted consecutive daily information into a sequence of the labels for each subject and finally clustered the people with insomnia based on their predominant labels. ResultsOur method identified 5 new insomnia-activity clusters of participants that conventional methods have not recognized, and significant differences in sleep and behavioral characteristics were shown among groups (analysis of variance on rank: F4,37=2.36, P=.07 for the sleep_min feature; F4,37=9.05, P

Details

Language :
English
ISSN :
22915222
Volume :
7
Issue :
12
Database :
Directory of Open Access Journals
Journal :
JMIR mHealth and uHealth
Publication Type :
Academic Journal
Accession number :
edsdoj.f839eadb52f24b9ba5fc6c4e99d99dec
Document Type :
article
Full Text :
https://doi.org/10.2196/14473