Back to Search Start Over

Validation in Zambia of a cervical screening strategy including HPV genotyping and artificial intelligence (AI)-based automated visual evaluation

Authors :
Groesbeck P. Parham
Didem Egemen
Brian Befano
Mulindi H. Mwanahamuntu
Ana Cecilia Rodriguez
Sameer Antani
Samson Chisele
Mukatimui Kalima Munalula
Friday Kaunga
Francis Musonda
Evans Malyangu
Aaron Lunda Shibemba
Silvia de Sanjose
Mark Schiffman
Vikrant V. Sahasrabuddhe
Source :
Infectious Agents and Cancer, Vol 18, Iss 1, Pp 1-11 (2023)
Publication Year :
2023
Publisher :
BMC, 2023.

Abstract

Abstract Background WHO has recommended HPV testing for cervical screening where it is practical and affordable. If used, it is important to both clarify and implement the clinical management of positive results. We estimated the performance in Lusaka, Zambia of a novel screening/triage approach combining HPV typing with visual assessment assisted by a deep-learning approach called automated visual evaluation (AVE). Methods In this well-established cervical cancer screening program nested inside public sector primary care health facilities, experienced nurses examined women with high-quality digital cameras; the magnified illuminated images permit inspection of the surface morphology of the cervix and expert telemedicine quality assurance. Emphasizing sensitive criteria to avoid missing precancer/cancer, ~ 25% of women screen positive, reflecting partly the high HIV prevalence. Visual screen-positive women are treated in the same visit by trained nurses using either ablation (~ 60%) or LLETZ excision, or referred for LLETZ or more extensive surgery as needed. We added research elements (which did not influence clinical care) including collection of HPV specimens for testing and typing with BD Onclarity™ with a five channel output (HPV16, HPV18/45, HPV31/33/52/58, HPV35/39/51/56/59/66/68, human DNA control), and collection of triplicate cervical images with a Samsung Galaxy J8 smartphone camera™ that were analyzed using AVE, an AI-based algorithm pre-trained on a large NCI cervical image archive. The four HPV groups and three AVE classes were crossed to create a 12-level risk scale, ranking participants in order of predicted risk of precancer. We evaluated the risk scale and assessed how well it predicted the observed diagnosis of precancer/cancer. Results HPV type, AVE classification, and the 12-level risk scale all were strongly associated with degree of histologic outcome. The AVE classification showed good reproducibility between replicates, and added finer predictive accuracy to each HPV type group. Women living with HIV had higher prevalence of precancer/cancer; the HPV-AVE risk categories strongly predicted diagnostic findings in these women as well. Conclusions These results support the theoretical efficacy of HPV-AVE-based risk estimation for cervical screening. If HPV testing can be made affordable, cost-effective and point of care, this risk-based approach could be one management option for HPV-positive women.

Details

Language :
English
ISSN :
17509378 and 80792731
Volume :
18
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Infectious Agents and Cancer
Publication Type :
Academic Journal
Accession number :
edsdoj.f807927317c4f2d9a9687630ac6a069
Document Type :
article
Full Text :
https://doi.org/10.1186/s13027-023-00536-5