Back to Search
Start Over
Reproducibility of Glutamate, Glutathione, and GABA Measurements in vivo by Single-Voxel STEAM Magnetic Resonance Spectroscopy at 7-Tesla in Healthy Individuals
- Source :
- Frontiers in Neuroscience, Vol 14 (2020)
- Publication Year :
- 2020
- Publisher :
- Frontiers Media S.A., 2020.
-
Abstract
- Background and PurposeDerangements in brain glutamate, glutathione, and γ-amino butyric acid (GABA) are implicated in a range of neurological disorders. Reliable methods to measure these compounds non-invasively in vivo are needed. We evaluated the reproducibility of their measurements in brain regions involved in the default mode network using quantitative MRS at 7-Tesla in healthy individuals.MethodsTen right-handed healthy volunteers underwent 7-Tesla MRI scans on 2 separate days, not more than 2 weeks apart. On each day two scanning sessions took place, with a re-positioning break in between. High-resolution isotropic anatomical scans were acquired prior to each scan, followed by single-voxel 1H-MRS using the STEAM pulse sequence on an 8 mL midline cubic voxel, positioned over the posterior cingulate and precuneus regions. Concentrations were corrected for partial-volume effects.ResultsMaximal Cramér-Rao lower bounds for glutamate, glutathione, and GABA were 2.0, 8.0, and 14.0%, respectively. Mean coefficients of variation within sessions were 5.9 ± 4.8%, 9.3 ± 7.6%, and 11.5 ± 8.8%, and between sessions were 4.6 ± 4.5%, 8.3 ± 5.7%, and 9.2 ± 8.7%, respectively. The mean (±SD) Dice’s coefficient for voxel overlap was 90 ± 4% within sessions and 86 ± 7% between sessions.ConclusionGlutamate, glutathione, and GABA can be reliably quantified using STEAM MRS at 7-Tesla from the posterior cingulate and precuneus cortices of healthy human subjects. STEAM MRS at 7-Tesla may be used to study the metabolic behavior of this important resting-state hub in various disease states.
Details
- Language :
- English
- ISSN :
- 1662453X
- Volume :
- 14
- Database :
- Directory of Open Access Journals
- Journal :
- Frontiers in Neuroscience
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.f80535b25074b29b422266bd889a0ab
- Document Type :
- article
- Full Text :
- https://doi.org/10.3389/fnins.2020.566643