Back to Search Start Over

A Contextually Supported Abnormality Detector for Maritime Trajectories

Authors :
Kristoffer Vinther Olesen
Ahcène Boubekki
Michael C. Kampffmeyer
Robert Jenssen
Anders Nymark Christensen
Sune Hørlück
Line H. Clemmensen
Source :
Journal of Marine Science and Engineering, Vol 11, Iss 11, p 2085 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

The analysis of maritime traffic patterns for safety and security purposes is increasing in importance and, hence, Vessel Traffic Service operators need efficient and contextualized tools for the detection of abnormal maritime behavior. Current models lack interpretability and contextualization of their predictions and are generally not quantitatively evaluated on a large annotated dataset comprising all expected traffic in a Region of Interest. We propose a model for the detection of abnormal maritime behaviors that provides the closest behaviors as context to the predictions. The normalcy model relies on two-step clustering, which is first computed based on the positions of the vessels and then refined based on their kinematics. We design for each step a similarity measure, which combined are able to distinguish boats cruising shipping lanes in different directions, but also vessels with more freedom, such as pilot boats. Our proposed abnormality detection model achieved, on a large annotated dataset extracted from AIS logs that we publish, an ROC-AUC of 0.79, which is on a par with State-of-the-Art deep neural networks, while being more computationally efficient and more interpretable, thanks to the contextualization offered by our two-step clustering.

Details

Language :
English
ISSN :
11112085 and 20771312
Volume :
11
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Journal of Marine Science and Engineering
Publication Type :
Academic Journal
Accession number :
edsdoj.f7c67bce4f04be09baacf7a21bcb7c6
Document Type :
article
Full Text :
https://doi.org/10.3390/jmse11112085