Back to Search Start Over

Toxicity of fluorescent tracers and their degradation byproducts

Authors :
Philippe Gombert
Hugues Biaudet
René de Seze
Pascal Pandard
Jean Carré
Source :
International Journal of Speleology, Vol 46, Iss 1, Pp 23-31 (2017)
Publication Year :
2017
Publisher :
University of South Florida Libraries, 2017.

Abstract

Tracer tests are frequently used to delineate catchment area of water supply springs in karstic zones. In the karstic chalk of Normandy, the main tracers used are fluorescent: uranine, sulforhodamine B, naphtionate, and Tinopal®. In this area, a statistical analysis shows that less than half of the injected tracers joins the monitored restitution points and enters the drinking water system where they undergo chlorination. Most of the injected tracers is absorbed in the rock matrix or is thrown out of the aquifer via karstic springs: then it can join superficial waters where it is degraded due to the sun and air action. The paper presents firstly the laboratory degradation of a first batch of fluorescent tracers in contact with chlorine, in order to simulate their passage through a water treatment system for human consumption. A second batch of the same tracers is subjected to agents of natural degradation: ultraviolet illumination, sunlight and air sparging. Most tracers is degraded, and toxicity and ecotoxicity tests (on rats, daphniae and algae) are performed on degradation byproducts. These tests do not show any acute toxicity but a low to moderate ecotoxicity. In conclusion, the most used fluorescent tracers of the Normandy karstic chalk and their artificial and natural degradation byproducts do not exhibit significant toxicity to humans and the aquatic environment, at the concentrations generally noted at the restitution points.

Details

Language :
English
ISSN :
1827806X and 03926672
Volume :
46
Issue :
1
Database :
Directory of Open Access Journals
Journal :
International Journal of Speleology
Publication Type :
Academic Journal
Accession number :
edsdoj.f7b7f9737e0a4600b27610ba8513f4e7
Document Type :
article
Full Text :
https://doi.org/10.5038/1827-806X.46.1.1995