Back to Search
Start Over
Moonlighting Arabidopsis molybdate transporter 2 family and GSH-complex formation facilitate molybdenum homeostasis
- Source :
- Communications Biology, Vol 6, Iss 1, Pp 1-13 (2023)
- Publication Year :
- 2023
- Publisher :
- Nature Portfolio, 2023.
-
Abstract
- Abstract Molybdenum (Mo) as essential micronutrient for plants, acts as active component of molybdenum cofactor (Moco). Core metabolic processes like nitrate assimilation or abscisic-acid biosynthesis rely on Moco-dependent enzymes. Although a family of molybdate transport proteins (MOT1) is known to date in Arabidopsis, molybdate homeostasis remained unclear. Here we report a second family of molybdate transporters (MOT2) playing key roles in molybdate distribution and usage. KO phenotype-analyses, cellular and organ-specific localization, and connection to Moco-biosynthesis enzymes via protein-protein interaction suggest involvement in cellular import of molybdate in leaves and reproductive organs. Furthermore, we detected a glutathione-molybdate complex, which reveals how vacuolar storage is maintained. A putative Golgi S-adenosyl-methionine transport function was reported recently for the MOT2-family. Here, we propose a moonlighting function, since clear evidence of molybdate transport was found in a yeast-system. Our characterization of the MOT2-family and the detection of a glutathione-molybdate complex unveil the plant-wide way of molybdate.
- Subjects :
- Biology (General)
QH301-705.5
Subjects
Details
- Language :
- English
- ISSN :
- 23993642
- Volume :
- 6
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Communications Biology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.f7b4b3b9883e405d8783d0d6572ba0d8
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s42003-023-05161-x