Back to Search Start Over

Vitamin C activates young LINE-1 elements in mouse embryonic stem cells via H3K9me3 demethylation

Authors :
Kevin C. L. Cheng
Jennifer M. Frost
Francisco J. Sánchez-Luque
Marta García-Canãdas
Darren Taylor
Wan R. Yang
Branavy Irayanar
Swetha Sampath
Hemalvi Patani
Karl Agger
Kristian Helin
Gabriella Ficz
Kathleen H. Burns
Adam Ewing
José L. García-Pérez
Miguel R. Branco
Source :
Epigenetics & Chromatin, Vol 16, Iss 1, Pp 1-16 (2023)
Publication Year :
2023
Publisher :
BMC, 2023.

Abstract

Abstract Background Vitamin C (vitC) enhances the activity of 2-oxoglutarate-dependent dioxygenases, including TET enzymes, which catalyse DNA demethylation, and Jumonji-domain histone demethylases. The epigenetic remodelling promoted by vitC improves the efficiency of induced pluripotent stem cell derivation, and is required to attain a ground-state of pluripotency in embryonic stem cells (ESCs) that closely mimics the inner cell mass of the early blastocyst. However, genome-wide DNA and histone demethylation can lead to upregulation of transposable elements (TEs), and it is not known how vitC addition in culture media affects TE expression in pluripotent stem cells. Results Here we show that vitC increases the expression of several TE families, including evolutionarily young LINE-1 (L1) elements, in mouse ESCs. We find that TET activity is dispensable for L1 upregulation, and that instead it occurs largely as a result of H3K9me3 loss mediated by KDM4A/C histone demethylases. Despite increased L1 levels, we did not detect increased somatic insertion rates in vitC-treated cells. Notably, treatment of human ESCs with vitC also increases L1 protein levels, albeit through a distinct, post-transcriptional mechanism. Conclusion VitC directly modulates the expression of mouse L1s and other TEs through epigenetic mechanisms, with potential for downstream effects related to the multiple emerging roles of L1s in cellular function.

Details

Language :
English
ISSN :
17568935
Volume :
16
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Epigenetics & Chromatin
Publication Type :
Academic Journal
Accession number :
edsdoj.f795feb9ee214159af694527040dae95
Document Type :
article
Full Text :
https://doi.org/10.1186/s13072-023-00514-6