Back to Search Start Over

Prohibitin modulates periodontium differentiation in mice development

Authors :
Yam Prasad Aryal
Song-Yi Han
Bandana Rana
Sanjiv Neupane
Tae-Young Kim
Elina Pokharel
Jung-Hong Ha
Jae-Kwang Jung
Chang-Hyeon An
Ji-Youn Kim
Hitoshi Yamamoto
Youngkyun Lee
Seo-Young An
Jo-Young Suh
Jae-Young Kim
Wern-Joo Sohn
Source :
Frontiers in Cell and Developmental Biology, Vol 12 (2024)
Publication Year :
2024
Publisher :
Frontiers Media S.A., 2024.

Abstract

Introduction: Prohibitin (PHB) is an essential scaffold protein that modulates signaling pathways controlling cell survival, metabolism, inflammation, and bone formation. However, its specific role in periodontium development remains less understood. This study aims to elucidate the expression pattern and function of PHB in periodontium development and its involvement in alveolar bone formation.Methods: Immunolocalization of PHB in the periodontium of postnatal (PN) mice were examined. Phb morpholino was micro-injected into the right-side mandible at PN5, corresponding to the position where the alveolar bone process forms in relation to the lower first molar. The micro-injection with a scramble control (PF-127) and the left-side mandibles were used as control groups. Five days post-micro-injection, immunohistochemical analysis and micro-CT evaluation were conducted to assess bone mass and morphological changes. Additionally, expression patterns of signaling molecules were examined following Phb downregulation using 24-h in vitro cultivation of developing dental mesenchyme at E14.5.Results: The immunostaining of PHB showed its localization in the periodontium at PN5, PN8, and PN10. The in vitro cultivation of dental mesenchyme resulted in alterations in Bmps, Runx2, and Wnt signalings after Phb knock-down. At 5 days post-micro-injection, Phb knocking down showed weak immunolocalizations of runt-related transcription factor (RUNX2) and osteocalcin (OCN). However, knocking down Phb led to histological alterations characterized by decreased bone mass and stronger localizations of Ki67 and PERIOSTIN in the periodontium compared 1 to control groups. The micro-CT evaluation showed decreased bone volume and increased PDL space in the Phb knock-down specimens, suggesting its regulatory role in bone formation.Discussion: The region-specific localization of PHB in the margin where alveolar bone forms suggests its involvement in alveolar bone formation and the differentiation of the periodontal ligament. Overall, our findings suggest that Phb plays a modulatory role in alveolar bone formation by harmoniously regulating bone-forming-related signaling molecules during periodontium development.

Details

Language :
English
ISSN :
2296634X
Volume :
12
Database :
Directory of Open Access Journals
Journal :
Frontiers in Cell and Developmental Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.f786521c3c2343d2a51c07fa41892edb
Document Type :
article
Full Text :
https://doi.org/10.3389/fcell.2024.1369634