Back to Search Start Over

Application of Electroporation Technique in Biofuel Processing

Authors :
Yousuf Abu
Khan Maksudur Rahman
Islam Amirul
Monir MdMinhaj Uddin
Ab Wahid Zularisam
Pirozzi Domenico
Source :
MATEC Web of Conferences, Vol 97, p 01085 (2017)
Publication Year :
2017
Publisher :
EDP Sciences, 2017.

Abstract

Biofuels production is mostly oriented with fermentation process, which requires fermentable sugar as nutrient for microbial growth. Lignocellulosic biomass (LCB) represents the most attractive, low-cost feedstock for biofuel production, it is now arousing great interest. The cellulose that is embedded in the lignin matrix has an insoluble, highly-crystalline structure, so it is difficult to hydrolyze into fermentable sugar or cell protein. On the other hand, microbial lipid has been studying as substitute of plant oils or animal fat to produce biodiesel. It is still a great challenge to extract maximum lipid from microbial cells (yeast, fungi, algae) investing minimum energy.Electroporation (EP) of LCB results a significant increase in cell conductivity and permeability caused due to the application of an external electric field. EP is required to alter the size and structure of the biomass, to reduce the cellulose crystallinity, and increase their porosity as well as chemical composition, so that the hydrolysis of the carbohydrate fraction to monomeric sugars can be achieved rapidly and with greater yields. Furthermore, EP has a great potential to disrupt the microbial cell walls within few seconds to bring out the intracellular materials (lipid) to the solution. Therefore, this study aims to describe the challenges and prospect of application of EP technique in biofuels processing.

Details

Language :
English, French
ISSN :
2261236X
Volume :
97
Database :
Directory of Open Access Journals
Journal :
MATEC Web of Conferences
Publication Type :
Academic Journal
Accession number :
edsdoj.f765cdfada94cf2a8a011de1fa894d8
Document Type :
article
Full Text :
https://doi.org/10.1051/matecconf/20179701085