Back to Search Start Over

Approach for combining fault and area sources in seismic hazard assessment: application in south-eastern Spain

Authors :
A. Rivas-Medina
B. Benito
J. M. Gaspar-Escribano
Source :
Natural Hazards and Earth System Sciences, Vol 18, Pp 2809-2823 (2018)
Publication Year :
2018
Publisher :
Copernicus Publications, 2018.

Abstract

This paper presents a methodological approach to seismic hazard assessment based on a hybrid source model composed of faults as independent entities and zones containing residual seismicity. The seismic potential of both types of sources is derived from different data: for the zones, the recurrence model is estimated from the seismic catalogue. For fault sources, it is inferred from slip rates derived from palaeoseismicity and GNSS (Global Navigation Satellite System) measurements.Distributing the seismic potential associated with each source is a key question when considering hybrid zone and fault models, and this is normally resolved using one of two possible alternatives: (1) considering a characteristic earthquake model for the fault and assigning the remaining magnitudes to the zone, or (2) establishing a cut-off magnitude, Mc, above which the seisms are assigned to the fault and below which they are considered to have occurred in the zone. This paper presents an approach to distributing seismic potential between zones and faults without restricting the magnitudes for each type of source, precluding the need to establish cut-off Mc values beforehand. This is the essential difference between our approach and other approaches that have been applied previously.The proposed approach is applied in southern Spain, a region of low-to-moderate seismicity where faults move slowly. The results obtained are contrasted with the results of a seismic hazard method based exclusively on the zone model. Using the hybrid approach, acceleration values show a concentration of expected accelerations around fault traces, which is not appreciated in the classic approach using only zones.

Details

Language :
English
ISSN :
15618633 and 16849981
Volume :
18
Database :
Directory of Open Access Journals
Journal :
Natural Hazards and Earth System Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.f6d1f80c786b430f97e28656fae03f32
Document Type :
article
Full Text :
https://doi.org/10.5194/nhess-18-2809-2018