Back to Search Start Over

Feasibility of high-resolution perfusion imaging using arterial spin labeling MRI at 3 Tesla

Authors :
Sriranga Kashyap
Ícaro Agenor Ferreira Oliveira
Kâmil Uludağ
Source :
Frontiers in Physiology, Vol 14 (2024)
Publication Year :
2024
Publisher :
Frontiers Media S.A., 2024.

Abstract

Cerebral blood flow (CBF) is a critical physiological parameter of brain health, and it can be non-invasively measured with arterial spin labeling (ASL) MRI. In this study, we evaluated and optimized whole-brain, high-resolution ASL as an alternative to the low-resolution ASL employed in the routine assessment of CBF in both healthy participants and patients. Two high-resolution protocols (i.e., pCASL and FAIR-Q2TIPS (PASL) with 2 mm isotropic voxels) were compared to a default clinical pCASL protocol (3.4 × 3.4 × 4 mm3), all of whom had an acquisition time of ≈ 5 min. We assessed the impact of high-resolution acquisition on reducing partial voluming and improving sensitivity to the perfusion signal, and evaluated the effectiveness of z-deblurring on the ASL data. We compared the quality of whole-brain ASL acquired using three available head coils with differing number of receive channels (i.e., 20, 32, and 64ch). We found that using higher coil counts (32 and 64ch coils as compared to 20ch) offers improved signal-to-noise ratio (SNR) and acceleration capabilities that are beneficial for ASL imaging at 3 Tesla (3 T). The inherent reduction in partial voluming effects with higher resolution acquisitions improves the resolving power of perfusion without impacting the sensitivity. In conclusion, our results suggest that high-resolution ASL (2 to 2.5 mm isotropic voxels) has the potential to become a new standard for perfusion imaging at 3 T and increase its adoption into clinical research and cognitive neuroscience applications.

Details

Language :
English
ISSN :
1664042X
Volume :
14
Database :
Directory of Open Access Journals
Journal :
Frontiers in Physiology
Publication Type :
Academic Journal
Accession number :
edsdoj.f6975f403a4f40aa82774afda7dcec91
Document Type :
article
Full Text :
https://doi.org/10.3389/fphys.2023.1271254