Back to Search
Start Over
Architectural Optimization of Parallel Authenticated Encryption Algorithm for Satellite Application
- Source :
- IEEE Access, Vol 8, Pp 48543-48556 (2020)
- Publication Year :
- 2020
- Publisher :
- IEEE, 2020.
-
Abstract
- High-speed data communication is becoming essential for many applications, including satellite communication. The security algorithms associated with the communication of information are also required to have high-speed for coping up with the communication speed. Moreover, the Authenticated Encryption (AE) algorithms provide high-speed communication and security services include data encryption, authentication, and integrity. The AE algorithms are available with serial and parallel architectures; among them, the Galois Counter Mode (GCM) algorithm has a parallel architecture. The Synthetic Initialization Vector (SIV) mode in the AES-GCM-SIV algorithm provides the nonce misuse protection using the GCM algorithm. Besides, reduced data throughput is provided using the AES-GCM-SIV algorithm as compared to the AES-GCM algorithm. This work introduced a parallel algorithm with re-keying and randomization of the initialization vector for high data throughput, nonce misuse protection, and side-channel attack protection. The implementation of the proposed algorithm is performed on Field Programmable Gate Array (FPGA) and it's compared with the FPGA implementations of AES-GCM, AES-GCM-SIV, and recently introduced algorithms. The optimization of the proposed algorithm and security analysis is presented for space application using different optimizations and a combination of optimizations.
Details
- Language :
- English
- ISSN :
- 21693536
- Volume :
- 8
- Database :
- Directory of Open Access Journals
- Journal :
- IEEE Access
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.f6331aaabed34e03b711c425be083645
- Document Type :
- article
- Full Text :
- https://doi.org/10.1109/ACCESS.2020.2978665