Back to Search Start Over

Early detection of cardiorespiratory complications and training monitoring using wearable ECG sensors and CNN

Authors :
HongYuan Lu
XinMiao Feng
Jing Zhang
Source :
BMC Medical Informatics and Decision Making, Vol 24, Iss 1, Pp 1-21 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract This research study demonstrates an efficient scheme for early detection of cardiorespiratory complications in pandemics by Utilizing Wearable Electrocardiogram (ECG) sensors for pattern generation and Convolution Neural Networks (CNN) for decision analytics. In health-related outbreaks, timely and early diagnosis of such complications is conclusive in reducing mortality rates and alleviating the burden on healthcare facilities. Existing methods rely on clinical assessments, medical history reviews, and hospital-based monitoring, which are valuable but have limitations in terms of accessibility, scalability, and timeliness, particularly during pandemics. The proposed scheme commences by deploying wearable ECG sensors on the patient’s body. These sensors collect data by continuously monitoring the cardiac activity and respiratory patterns of the patient. The collected raw data is then transmitted securely in a wireless manner to a centralized server and stored in a database. Subsequently, the stored data is assessed using a preprocessing process which extracts relevant and important features like heart rate variability and respiratory rate. The preprocessed data is then used as input into the CNN model for the classification of normal and abnormal cardiorespiratory patterns. To achieve high accuracy in abnormality detection the CNN model is trained on labeled data with optimized parameters. The performance of the proposed scheme is evaluated and gauged using different scenarios, which shows a robust performance in detecting abnormal cardiorespiratory patterns with a sensitivity of 95% and specificity of 92%. Prominent observations, which highlight the potential for early interventions include subtle changes in heart rate variability and preceding respiratory distress. These findings show the significance of wearable ECG technology in improving pandemic management strategies and informing public health policies, which enhances preparedness and resilience in the face of emerging health threats.

Details

Language :
English
ISSN :
14726947
Volume :
24
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Medical Informatics and Decision Making
Publication Type :
Academic Journal
Accession number :
edsdoj.f5e7d86b2ad456586bd4b12d21d4e90
Document Type :
article
Full Text :
https://doi.org/10.1186/s12911-024-02599-9