Back to Search Start Over

First-Principles Calculation of MoO2 and MoO3 Electronic and Optical Properties Compared with Experimental Data

Authors :
Eleonora Pavoni
Mircea Gabriel Modreanu
Elaheh Mohebbi
Davide Mencarelli
Pierluigi Stipa
Emiliano Laudadio
Luca Pierantoni
Source :
Nanomaterials, Vol 13, Iss 8, p 1319 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

MoO3 and MoO2 systems have attracted particular attention for many widespread applications thanks to their electronic and optical peculiarities; from the crystallographic point of view, MoO3 adopts a thermodynamically stable orthorhombic phase (α-MoO3) belonging to the space group Pbmn, while MoO2 assumes a monoclinic arrangement characterized by space group P21/c. In the present paper, we investigated the electronic and optical properties of both MoO3 and MoO2 by using Density Functional Theory calculations, in particular, the Meta Generalized Gradient Approximation (MGGA) SCAN functional together with the PseudoDojo pseudopotential, which were used for the first time to obtain a deeper insight into the nature of different Mo–O bonds in these materials. The calculated density of states, the band gap, and the band structure were confirmed and validated by comparison with already available experimental results, while the optical properties were validated by recording optical spectra. Furthermore, the calculated band-gap energy value for the orthorhombic MoO3 showed the best match to the experimental value reported in the literature. All these findings suggest that the newly proposed theoretical techniques reproduce the experimental evidence of both MoO2 and MoO3 systems with high accuracy.

Details

Language :
English
ISSN :
20794991
Volume :
13
Issue :
8
Database :
Directory of Open Access Journals
Journal :
Nanomaterials
Publication Type :
Academic Journal
Accession number :
edsdoj.f5d4c3306a4646ef93c9c00b80a3076d
Document Type :
article
Full Text :
https://doi.org/10.3390/nano13081319