Back to Search Start Over

Deciphering the code for retroviral integration target site selection.

Authors :
Federico Andrea Santoni
Oliver Hartley
Jeremy Luban
Source :
PLoS Computational Biology, Vol 6, Iss 11, p e1001008 (2010)
Publication Year :
2010
Publisher :
Public Library of Science (PLoS), 2010.

Abstract

Upon cell invasion, retroviruses generate a DNA copy of their RNA genome and integrate retroviral cDNA within host chromosomal DNA. Integration occurs throughout the host cell genome, but target site selection is not random. Each subgroup of retrovirus is distinguished from the others by attraction to particular features on chromosomes. Despite extensive efforts to identify host factors that interact with retrovirion components or chromosome features predictive of integration, little is known about how integration sites are selected. We attempted to identify markers predictive of retroviral integration by exploiting Precision-Recall methods for extracting information from highly skewed datasets to derive robust and discriminating measures of association. ChIPSeq datasets for more than 60 factors were compared with 14 retroviral integration datasets. When compared with MLV, PERV or XMRV integration sites, strong association was observed with STAT1, acetylation of H3 and H4 at several positions, and methylation of H2AZ, H3K4, and K9. By combining peaks from ChIPSeq datasets, a supermarker was identified that localized within 2 kB of 75% of MLV proviruses and detected differences in integration preferences among different cell types. The supermarker predicted the likelihood of integration within specific chromosomal regions in a cell-type specific manner, yielding probabilities for integration into proto-oncogene LMO2 identical to experimentally determined values. The supermarker thus identifies chromosomal features highly favored for retroviral integration, provides clues to the mechanism by which retrovirus integration sites are selected, and offers a tool for predicting cell-type specific proto-oncogene activation by retroviruses.

Subjects

Subjects :
Biology (General)
QH301-705.5

Details

Language :
English
ISSN :
1553734X and 15537358
Volume :
6
Issue :
11
Database :
Directory of Open Access Journals
Journal :
PLoS Computational Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.f5b523d99a416ebaac78ab1ebe0552
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pcbi.1001008