Back to Search Start Over

Impact of methane and other precursor emission reductions on surface ozone in Europe: scenario analysis using the European Monitoring and Evaluation Programme (EMEP) Meteorological Synthesizing Centre – West (MSC-W) model

Authors :
W. E. van Caspel
Z. Klimont
C. Heyes
H. Fagerli
Source :
Atmospheric Chemistry and Physics, Vol 24, Pp 11545-11563 (2024)
Publication Year :
2024
Publisher :
Copernicus Publications, 2024.

Abstract

The impacts of future methane (CH4) and other precursor emission changes are investigated for surface ozone (O3) in the United Nations Economic Commission for Europe (UNECE) region excluding North America and Israel (the EMEP region, for European Monitoring and Evaluation Programme) for the year 2050. The analysis includes a current legislation (CLE) and maximum feasible technical reduction (MFR) scenario, as well as a scenario that combines MFRs with an additional dietary shift that also meets the Paris Agreement objectives with respect to greenhouse gas emissions (LOW). For each scenario, background CH4 concentrations are calculated using a probabilistic Earth system model emulator and combined with other precursor emissions in a three-dimensional Eulerian chemistry-transport model. While focus is placed on peak season maximum daily 8 h average (MDA8) O3 concentrations, a range of other indicators for health and vegetation impacts are also discussed. Our analysis shows that roughly one-third of the total peak season MDA8 reduction achieved between the 2050 CLE and MFR scenarios is attributable to CH4 reductions, resulting predominantly from CH4 emission reductions outside of the EMEP region. The impact of other precursor emission reductions is split nearly evenly between the reductions inside and outside of the EMEP region. However, the relative importance of CH4 and other precursor emission reductions is shown to depend on the choice of O3 indicator, though indicators sensitive to peak O3 show generally consistent results. The analysis also highlights the synergistic impacts of CH4 mitigation as reducing solely CH4 achieves, beyond air quality improvement, nearly two-thirds of the total global warming reduction calculated for the LOW scenario compared to the CLE case.

Subjects

Subjects :
Physics
QC1-999
Chemistry
QD1-999

Details

Language :
English
ISSN :
16807316 and 16807324
Volume :
24
Database :
Directory of Open Access Journals
Journal :
Atmospheric Chemistry and Physics
Publication Type :
Academic Journal
Accession number :
edsdoj.f532225e6a44207b448539f8c0cff09
Document Type :
article
Full Text :
https://doi.org/10.5194/acp-24-11545-2024